skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khonsari, Michael M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract Four different experimental approaches for rapid estimation of fatigue limit (endurance limit) based on energy dissipation during cyclic loading are discussed. The presented approaches use energy dissipation and thermography and can reliably evaluate the fatigue limit of material by conducting the fatigue test on a single specimen. Results show that the released energy due to damage accumulation at the stress levels above the fatigue limit changes the trend of energy dissipation and that this trend can be used to predict the fatigue limit. Experimental results on CS 1018 and SS 304 specimens are presented to illustrate the utility of the proposed methods. 
    more » « less